Ada tiga tahap penting dalam KDD, yaitu (Tan dkk, 2006) :
Data Preprocessing
Proses ini bertujuan untuk mentransformasikan data input ke dalam format yang sesuai untuk kemudian dianalisa. Dalam tahap ini dilakukan proses penggabungan data dari berbagai sumber, pembersihan data untuk menghilangkan noise data dan data ganda, serta memilih atribut data yang diperlukan bagi proses data mining.
Data Mining
Proses ini bertujuan untuk medapatkan pola-pola dan informasi yang tersembunyi di dalam basis data. Ada beberapa teknik yang dapat digunakan dalam data mining untuk mendapatkan pola-pola dan informasi tersembunyi, yaitu classification, neural network, decision tree, genetic algorithm, clustering, OLAP (Online Analitycal Processing), dan association rules.
Postprocessing
Proses ini bertujuan untuk memastikan hanya hasil yang valid dan berguna yang dapat digunakan oleh pihak yang berkepentingan. Contoh dari proses ini adalah proses visualisasi, yaitu proses untuk menganalisa dan mengeksplorasi data dan hasil dari proses data mining dari berbagai sudut pandang.