Thyristor


Thyristor

Thyristor berakar kata dari bahasa Yunani yang berarti ‘pintu’. Dinamakan demikian barangkali karena sifat dari komponen ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk melewatkan arus listrik. Ada beberapa komponen yang termasuk thyristor antara lain PUT (programmable uni-junction transistor), UJT (uni-junction transistor ), GTO (gate turn off switch), photo SCR dan sebagainya. Namun pada kesempatan ini, yang akan kemukakan adalah  komponen-komponen thyristor yang dikenal dengan sebutan SCR (silicon controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas bagaimana prinsip kerja serta aplikasinya.

Struktur Thyristor

Ciri-ciri utama dari sebuah thyristor adalah komponen yang terbuat dari bahan semiconductor silicon. Walaupun bahannya sama, tetapi struktur P-N junction yang dimilikinya lebih kompleks dibanding transistor bipolar atau MOS. Komponen thyristor lebih digunakan sebagai saklar (switch) ketimbang sebagai penguat arus atau tegangan seperti halnya transistor.

Struktur dasar thyristor adalah struktur 4 layer PNPN seperti yang ditunjukkan pada gambar a. Jika dipilah, struktur ini dapat dilihat sebagai dua buah struktur junction PNP dan NPN yang tersambung di tengah seperti pada gambar b. Ini tidak lain adalah dua buah transistor PNP dan NPN yang tersambung pada masing-masing kolektor dan base. Jika divisualisasikan sebagai transistor Q1 dan Q2, maka struktur thyristor ini dapat diperlihatkan seperti pada gambar yang berikut ini.

Terlihat di sini kolektor transistor Q1 tersambung pada base transistor Q2 dan sebaliknya kolektor transistor Q2 tersambung pada base transistor Q1.  Rangkaian transistor yang demikian menunjukkan adanya loop penguatan arus di bagian tengah. Dimana diketahui bahwa Ic = b Ib, yaitu arus kolektor adalah penguatan dari arus base.

Jika misalnya ada arus sebesar Ib yang mengalir pada base transistor Q2, maka akan ada arus Ic yang mengalir pada kolektor Q2. Arus kolektor ini merupakan arus base Ib pada transistor Q1, sehingga akan muncul penguatan pada pada arus kolektor transistor Q1. Arus kolektor transistor Q1 tdak lain adalah arus base bagi transistor Q2. Demikian seterusnya sehingga makin lama sambungan PN dari thyristor ini di bagian tengah akan mengecil dan hilang. Tertinggal hanyalah lapisan P dan N dibagian luar.

Jika keadaan ini tercapai, maka struktur yang demikian todak lain adalah struktur dioda PN (anoda-katoda) yang sudah dikenal. Pada saat yang demikian, disebut bahwa thyristor dalam keadaan ON dan dapat mengalirkan arus dari anoda menuju katoda seperti layaknya sebuah dioda.

Bagaimana kalau pada thyristor ini kita beri beban lampu dc dan diberi suplai tegangan dari nol sampai tegangan tertentu seperti pada gambar di atas. Apa yang terjadi pada lampu ketika tegangan dinaikkan dari nol. Ya betul, tentu saja lampu akan tetap padam karena lapisan N-P yang ada ditengah akan mendapatkan reverse-bias (teori dioda). Pada saat ini disebut thyristor dalam keadaan OFF karena tidak ada arus yang bisa mengalir atau sangat kecil sekali. Arus tidak dapat mengalir sampai pada suatu tegangan reverse-bias tertentu yang menyebabkan sambungan NP ini jenuh dan hilang. Tegangan ini disebut tegangan breakdown dan pada saat itu arus mulai dapat mengalir melewati thyristor sebagaimana dioda umumnya. Pada thyristor tegangan ini disebut tegangan breakover Vbo.


Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *